Exercise 3

Consider the time-dependent scalar function:

$$
s=x+y+z t
$$

Evaluate both sides of Eq. A.5-5 over the volume bounded by the planes: $x=0, x=t ; y=0$, $y=2 t ; z=0, z=4 t$. The quantities x, y, z, t are dimensionless.

Solution

Eq. A.5-5 is the Leibniz formula for differentiating a volume integral,

$$
\frac{d}{d t} \iiint_{V} s d V=\iiint_{V} \frac{\partial s}{\partial t} d V+\oiint_{S} s\left(\mathbf{v}_{S} \cdot \hat{\mathbf{n}}\right) d S
$$

where V is a closed volume whose surface elements are moving at velocity \mathbf{v}_{S}.

The Left-hand Side

$$
\begin{aligned}
\frac{d}{d t} \iiint_{V} s d V & =\frac{d}{d t} \iiint_{V}(x+y+z t) d V \\
& =\frac{d}{d t} \int_{0}^{4 t} \int_{0}^{2 t} \int_{0}^{t}(x+y+z t) d x d y d z \\
& =\left.\frac{d}{d t} \int_{0}^{4 t} \int_{0}^{2 t}\left(\frac{x^{2}}{2}+x y+x z t\right)\right|_{0} ^{t} d y d z \\
& =\frac{d}{d t} \int_{0}^{4 t} \int_{0}^{2 t}\left(\frac{t^{2}}{2}+t y+t^{2} z\right) d y d z \\
& =\left.\frac{d}{d t} \int_{0}^{4 t}\left(\frac{t^{2}}{2} y+t \frac{y^{2}}{2}+t^{2} z y\right)\right|_{0} ^{2 t} d z \\
& =\frac{d}{d t} \int_{0}^{4 t}\left(3 t^{3}+2 t^{3} z\right) d z \\
& =\left.\frac{d}{d t}\left(3 t^{3} z+2 t^{3} \frac{z^{2}}{2}\right)\right|_{0} ^{4 t} \\
& =\frac{d}{d t}\left(12 t^{4}+16 t^{5}\right) \\
& =48 t^{3}+80 t^{4} \\
& =16 t^{3}(3+5 t)
\end{aligned}
$$

The Right-hand Side

Evaluate the first term on the right-hand side.

$$
\begin{aligned}
\iiint_{V} \frac{\partial s}{\partial t} d V & =\iiint_{V} \frac{\partial}{\partial t}(x+y+z t) d V \\
& =\iiint_{V} z d V \\
& =\int_{0}^{4 t} \int_{0}^{2 t} \int_{0}^{t} z d x d y d z \\
& =\left(\int_{0}^{t} d x\right)\left(\int_{0}^{2 t} d y\right)\left(\int_{0}^{4 t} z d z\right) \\
& =\left.(t-0)(2 t-0)\left(\frac{z^{2}}{2}\right)\right|_{0} ^{4 t} \\
& =(t)(2 t)\left(8 t^{2}\right) \\
& =16 t^{4}
\end{aligned}
$$

Now the second term will be evaluated. The volume V is a rectangular box where one of its six faces expands in the x-direction with speed $d x / d t=1$, another face expands in the y-direction with speed $d y / d t=2$, and another face expands in the z-direction with speed $d z / d t=4$. The faces at $x=0, y=0$, and $z=0$ do not move, so they will not contribute to the surface integral. The closed surface integral will thus have three nonzero terms.

$$
\oiint_{S} s\left(\mathbf{v}_{S} \cdot \hat{\mathbf{n}}\right) d S=\iint_{S_{1}} s\left(\mathbf{v}_{S} \cdot \hat{\mathbf{n}}\right) d S+\iint_{S_{2}} s\left(\mathbf{v}_{S} \cdot \hat{\mathbf{n}}\right) d S+\iint_{S_{3}} s\left(\mathbf{v}_{S} \cdot \hat{\mathbf{n}}\right) d S
$$

Each of the three faces moves in the direction perpendicular to itself, so ($\left.\mathbf{v}_{S} \cdot \hat{\mathbf{n}}\right)$ is just the speed that each face moves.

$$
\oiint_{S} s\left(\mathbf{v}_{S} \cdot \hat{\mathbf{n}}\right) d S=\iint_{S_{1}} s(1) d S+\iint_{S_{2}} s(2) d S+\iint_{S_{3}} s(4) d S
$$

Bring the constants in front.

$$
\oiint_{S} s\left(\mathbf{v}_{S} \cdot \hat{\mathbf{n}}\right) d S=\iint_{S_{1}} s d S+2 \iint_{S_{2}} s d S+4 \iint_{S_{3}} s d S
$$

Our task now is to evaluate the double integral of s over the moving faces. The face moving in the x-direction will be in $d y$ and $d z$, the one moving in the y-direction will be in $d x$ and $d z$, and the one moving in the z-direction will be in $d x$ and $d y$.

$$
\begin{aligned}
\oiint_{S} s\left(\mathbf{v}_{S} \cdot \hat{\mathbf{n}}\right) d S & =\int_{0}^{4 t} \int_{0}^{2 t} s d y d z+2 \int_{0}^{4 t} \int_{0}^{t} s d x d z+4 \int_{0}^{2 t} \int_{0}^{t} s d x d y \\
& =\int_{0}^{4 t} \int_{0}^{2 t}(x+y+z t) d y d z+2 \int_{0}^{4 t} \int_{0}^{t}(x+y+z t) d x d z+4 \int_{0}^{2 t} \int_{0}^{t}(x+y+z t) d x d y
\end{aligned}
$$

Plug in $x=t$ into the first double integral, $y=2 t$ into the second double integral, and $z=4 t$ into the third double integral.

$$
\begin{aligned}
& =\int_{0}^{4 t} \int_{0}^{2 t}(t+y+z t) d y d z+2 \int_{0}^{4 t} \int_{0}^{t}(x+2 t+z t) d x d z+4 \int_{0}^{2 t} \int_{0}^{t}\left(x+y+4 t^{2}\right) d x d y \\
& =\left.\int_{0}^{4 t}\left(t y+\frac{y^{2}}{2}+y z t\right)\right|_{0} ^{2 t} d z+\left.2 \int_{0}^{4 t}\left(\frac{x^{2}}{2}+2 t x+x z t\right)\right|_{0} ^{t} d z+\left.4 \int_{0}^{2 t}\left(\frac{x^{2}}{2}+x y+4 t^{2} x\right)\right|_{0} ^{t} d y
\end{aligned}
$$

$$
\begin{aligned}
\oiint_{S} s\left(\mathbf{v}_{S} \cdot \hat{\mathbf{n}}\right) d S & =\int_{0}^{4 t}\left(4 t^{2}+2 t^{2} z\right) d z+2 \int_{0}^{4 t}\left(\frac{5 t^{2}}{2}+t^{2} z\right) d z+4 \int_{0}^{2 t}\left(\frac{t^{2}}{2}+t y+4 t^{3}\right) d y \\
& =\left.\left(4 t^{2} z+2 t^{2} \frac{z^{2}}{2}\right)\right|_{0} ^{4 t}+\left.2\left(\frac{5 t^{2}}{2} z+t^{2} \frac{z^{2}}{2}\right)\right|_{0} ^{4 t}+\left.4\left(\frac{t^{2}}{2} y+t \frac{y^{2}}{2}+4 t^{3} y\right)\right|_{0} ^{2 t} \\
& =\left(16 t^{3}+16 t^{4}\right)+2\left(10 t^{3}+8 t^{4}\right)+4\left(t^{3}+2 t^{3}+8 t^{4}\right) \\
& =16 t^{3}+16 t^{4}+20 t^{3}+16 t^{4}+4 t^{3}+8 t^{3}+32 t^{4} \\
& =48 t^{3}+64 t^{4}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\iiint_{V} \frac{\partial s}{\partial t} d V+\oiint_{S} s\left(\mathbf{v}_{S} \cdot \hat{\mathbf{n}}\right) d S & =16 t^{4}+48 t^{3}+64 t^{4} \\
& =48 t^{3}+80 t^{4} \\
& =16 t^{3}(3+5 t)
\end{aligned}
$$

We conclude that the Leibniz formula is verified.

